第115章 数学竞赛决赛(2 / 2)

给定一个多项式p(x) = a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0,其中所有的系数a_i都是整数,并且满足|a_i| <= i。证明或反证:存在无穷多个不同的整数x,使得p(x)是一个完全平方数。

提示:考虑使用费马小定理和二次剩余的性质,结合中国剩余定理进行分析。

第二道题是几何题:

在一个平面上,有三个点A、b、c,使得Ab = bc = cA。点d是线段bc上的一个点,且bd = dc。点E是线段Ac上的一个点,使得角bdE = 角cbE。证明:点E是线段Ac的中点。

提示:利用角的性质和线段的比例关系,结合圆的性质进行分析。可以尝试构造辅助圆或使用角平分线的性质。

这些题目可以说都是数学竞赛中的高难度题目,需要选手具备扎实的数学基础和灵活的解题技巧。解题时,可以从已知条件出发,逐步推导出未知量,或者尝试构造辅助元素来简化问题。

更多的参赛者麻瓜了,有的受不了这种氛围直接走掉了,有的使劲抓了抓头皮,做着最后的挣扎,还有的皱紧眉头认真思考。唯有徐武还是那么淡定,即使不给出提示,他也能很快的做出来。当别人还在冥思苦想时,他已经在试卷的答题纸上书写答案,整个过程丝滑无比,也引来了更多人的关注。但因为担心吵到剩下的参赛者,只能小声的在一旁交流。

白发魔也在人群中,看着胸有成竹,淡定书写的徐武,嘴角露出了一抹微笑,但是没有发出他特有的呵呵声。可是听见周围在议论徐武的时候,他总会忍不住挺起胸膛,似乎这样才能看的更远一样。

离开的人越来越多,弃权的参赛者也越走越多,后面的加分题被投上大屏时,还在现场的参赛者就是有三五个了。其他人都沦为了看客,与其他观众一样行使着注目礼。

最后的加分题:

证明或反证哥德巴赫猜想(Goldbach's conjecture):任何大于2的偶数都可以写成两个质数之和。

提示:这个问题是一个未解数学难题,至今仍未有定论。解决这个问题需要深入研究数论中的素数分布规律,尝试构造合适的数学工具和方法。可以考虑使用筛法、循环论证、概率论等方法进行分析,但需要极高的数学素养和创新思维。

看到这个题目,剩下的五人都感觉很意外,直接证明世界性难题了,这真的是大学生数学竞赛吗?有三人挣扎了下,也是放弃了。最后的最后,只剩下徐武一个人在下面稿纸上沙沙沙的写着,此时的他像黑夜里的星星一样耀眼。

最后,在徐武停下笔试,主持人直接把其他的试卷封存了起来,刚他接到消息,务必保证这个学生的解题试卷完整干净,稿纸也要收起来,这让他意识到,这个学生可能是一个伟大的存在。

徐武倒是没多想,收起自己的东西就离开了座位,朝着大礼堂外面走去,其他人的看法,他不感兴趣。